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Intelligent systems may be viewed as a framework for solving the problems of nonlinear system
control. The intelligence of the system in the nonlinear or changing environment is used to
recognize in which environment the system currently resides and to service it appropriately. This
paper presents a general methodology of adaptive control based on multiple models in fuzzy
form to deal with plants with unknown parameters which depend on known plant variables. We
introduce a novel model-reference fuzzy adaptive control system which is based on the fuzzy
basis function expansion. The generality of the proposed algorithm is substantiated by the
Stone-Weierstrass theorem which indicates that any continuous function can be approximated by
fuzzy basis function expansion. In the sense of adaptive control this implies the adaptive law with
fuzzified adaptive parameters which are obtained using Lyapunov stability criterion. The com-
bination of adaptive control theory based on models obtained by fuzzy basis function expansion
results in fuzzy direct model-reference adaptive control which provides higher adaptation ability
than basic adaptive-control systems. The proposed control algorithm is the extension of direct
model-reference fuzzy adaptive-control to nonlinear plants. The direct fuzzy adaptive controller
directly adjusts the parameter of the fuzzy controller to achieve approximate asymptotic tracking
of the model-reference input. The main advantage of the proposed approach is simplicity
together with high performance, and it has been shown that the closed-loop system using the
direct fuzzy adaptive controller is globally stable and the tracking error converges to the residual
set which depends on fuzzification properties. The proposed approach can be implemented on a
wide range of industrial processes. In the paper the foundation of the proposed algorithm are
given and some simulation examples are shown and discussed. © 2002 Wiley Periodicals, Inc.

1. INTRODUCTION

The nature of dynamical systems usually implies slow changes of systems
parameters and changes of the parameters due to the different operating conditions
or operating points. In that case an adaptive controller should be designed to follow
the changes of operating conditions and adapt in a certain prescribed way.
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The model-reference adaptive control systems are proven to be globally stable
under certain assumptions on the unknown process: phase minimality; no distur-
bance or unmodeled dynamics; linearity; time invariance; and knowledge of the
process relative ignore degree and the sign of so-called high-frequency gain.
Unfortunately, the assumptions given above are often violated in practice and
“adaptive algorithms as published in the literature are likely to produce unstable
control systems if they are implemented on physical systems directly as they
appear in the literature.”1 Many of the above assumptions can be circumvented on
the cost of more complex adaptive and control laws. The robustness of the adaptive
systems to unmodeled dynamics and bounded disturbance is treated in Refs. 2 and
3. Nonlinear adaptive control has been widely studied in the last decade,4 but the
results obtained seem not to be easily transferred to the engineering society since
they require a fairly good knowledge of mathematics. Thus these approaches are
avoided by practicing engineers.

In recent years, a lot of effort has been applied to neuro-fuzzy identification
of complex plants, which cannot be easily modeled theoretically. The neuro-fuzzy
adaptive control approaches based on neuro-fuzzy presentation of plant dynamics
appeared in the literature in Ref. 5, where detailed discussion on identification and
control of dynamical systems based on neural networks is given. This was also
discussed in Ref. 6, where the tracking performance of model reference adaptive
control using multilayer neural networks based on Lyapunov stability approach is
studied, and in Refs. 7 and 8, where stable adaptive fuzzy controller for nonlinear
systems is designed and explained. In Ref. 9 an adaptive control using multiple
models is developed and investigated.

Our approach is qualitatively different. The model of the plant is given by the
simple fuzzy Takagi-Sugeno model, which is very well suited for use in practice
since it only requires basic knowledge of algebra. All equations are shown in
simple form as in the description of the adaptive control of the linear plant. The
basic idea of model-reference adaptive control is to introduce a global stability
criterion into the design procedure and to choose the adaptive control law in such
a way that the requirements of the stability criterion are fulfilled.10 In our paper, an
extension of model reference adaptive control to nonlinear systems is made using
fuzzy sets theory. We are introducing a novel globally stable model-reference
fuzzy adaptive control. The algorithm is based on direct model-reference adaptive
control obtained by Lyapunov criterion. The main idea of our approach is fuzzi-
fication of adaptive parameters. The parameters are fuzzified corresponding to the
process input, output, or state variables of the process. The paper is focused only
on the problem of nonlinearity. All other typical problems which are common to
adaptive systems in general can be treated and solved as proposed in the litera-
ture.3,11,12

The direct fuzzy adaptive controller directly adjusts the parameter of the fuzzy
controller to achieve asymptotic tracking of the model-reference input.13,14 It has
been shown that asymptotic tracking convergence is possible if the approximation
error is square integrable. This means that the fuzzy basis function expansion or
fuzzy modeling of the plant dynamics should be designed in a way to achieve the
modeling error (i.e., error between the real plant dynamics and the model) which
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is square integrable. Even in the case where the approximation (i.e., the modeling
or approximation error) is not square integrable, we have shown that it is possible
to achieve the asymptotic tracking of the model-reference signal. The main
advantage of the proposed approach is simplicity together with high performance,
and it has been proven that the closed-loop system using the direct fuzzy adaptive
controller is globally stable and the tracking error converges to the residual set
which depends on fuzzification properties. The proposed approach can be imple-
mented on a wide range of industrial processes.

The paper is organized as follows: In Section 2 a description of the direct
model-reference fuzzy adaptive system is given; in Section 3 two simulation
examples are described and shown. In the conclusion some main observations are
discussed.

2. DIRECT FUZZY MODEL-REFERENCE ADAPTIVE CONTROL

2.1. Model-Reference Adaptive Control of LTI Systems

The globally stable continuous model-reference adaptive control dynamics are
given first. The goal of the model-reference adaptive system is to design a
controller which forces the process to follow the model output, which is in the case
of first-order plants, given by the following equation:

Gm�s� �
ym�s�

w�s�
�

bm

s � am
(1)

where w(t) stands for the reference signal and ym(t) for reference-model output. To
obtain a perfect model, a prefilter with gain f and gain q in the feedback loop
should be designed. Assuming the process transfer function

Gp�s� �
yp�s�

u�s�
�

b

s � a
(2)

and control law given in the following equation,

u � fw � qyp (3)

the closed-loop transfer function is given by

Gw�s� �
fb

s � a � bq
(4)

The parameter errors between open-loop parameters and model-reference
parameters are given next:

b̃ � fb � bm

ã � a � bq � am (5)

Applying Equation 5 and subtracting the differential equations of the closed-loop
system and reference model, the error equation is obtained:
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ė � ame � b̃w � ãyp (6)

where e defines the error between the plant output and model-reference response

e � yp � ym (7)

Introducing a Lyapunov function

V�e, ã, b̃� � e2 �
1

�f
b̃2 �

1

�q
ã2 (8)

which is definite in �3, the space (e, ã, b̃). The time derivative of V(e, ã, b̃) along
Equation 6 is given by:

V̇�e, ã, b̃� � �2ame2 �
2

�f
b̃b̃̇ � 2b̃we �

2

�q
ãȧ̃ � 2ãype (9)

The condition V̇(e, ã, b̃) � 0 leads to the adaptive-control laws in Equation 10:

ḟ � �
�f

b
ew

q̇ �
�q

b
eyp (10)

where time-invariance of the plant is assumed. If the sign of the so-called high-
frequency gain b is known in advance, Equation 10 can be rewritten as:

ḟ � ��*fsign�b�ew

q̇ � �*qsign�b�eyp (11)

where �*f and �*q are arbitrary positive constants.
Global stability is obtained in a small operation region where the process can

be sufficiently described by a linear model. Problems arise in the case of unmod-
eled dynamics and nonlinear process plants. Our main motivation was to find a
simple solution for adaptive control of nonlinear processes.

2.2. DFMRAC of Nonlinear Systems

The algorithm of Direct Fuzzy Model-Reference Adaptive Control (DFM-
RAC) will be presented next. Because of the simplicity, we are assuming the
first-order model plant, but the approach can easily extend to a higher order.

The proposed fuzzy adaptive-control system assumes the fuzzification of
forward gain f and feedback gain q. The choice of fuzzification variables depends
on the process behavior and is a similar problem to that of structural identification
in the case of Takagi-Sugeno (TS) model.15 The fuzzified gains are described by
means of fuzzy numbers f and q:

fT � �f1, f2, . . . , fk�
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qT � �q1, q2, . . . , qk� (12)

where k stands for number of fuzzy rules.
We assume that the process under investigation can be modeled by the TS

fuzzy model of the form where two variables are given in the premise:

Ri : if z1 is Ai and z2 is Bi then ẏp � �aiyp � biu, i � 1, . . . , k (13)

where z1 and z2 are the variables which influence mostly the nonlinear behavior of
the process, yp is the process output, ẏp is the derivative of the process output and
is at the same time the fuzzy model output, and Ai and Bi are fuzzy membership
functions where ia � 1, . . . , na and ib � 1, . . . , nb. The number of membership
functions for the first and the second input variables defines the number of rules
k � na � nb. The membership functions have to cover the whole operating area
of the closed-loop system. Using this type of TS fuzzy model and the models of
higher order in consequent parts of the rules, a huge number of industrial processes
can be modeled. The output of the TS model is then given by the following
equation:

ẏp �
�i�1

k ��*i���k����aiyp � biu��

�i�1
k �*i���k��

(14)

where �(k) represents the regressor which consists of input and output signals. The
degree of fulfillment �*i(�(k)) is obtained using T-norm which is in this case a
simple algebraic product:

�*i���k�� � T��Ai�z1�, �Bi�z2�� � �Ai�z1� � �Bi�z2� (15)

where �Ai
( z1) and �Bi

( z2) stand for degrees of fulfillment of the corresponding
membership functions. The degrees of fulfillment for the whole set of rules can be
written as:

�* � ��*1, �*2, . . . , �*k�
T (16)

and given in normalized form as

� �
�*

�i�1
k �*i

� ��1, �2, . . . , �k�
T (17)

resulting in equality:

�
i�1

k

�i � 1 (18)

Due to Equations 14 and 17, the process can be modeled in fuzzy form as:

ẏp � ��Tayp � �Tbu (19)

where a and b stand for fuzzified parameters of the process which have constant
elements:
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aT � �a1, a2, . . . , ak�

bT � �b1, b2, . . . , bk� (20)

The model in Equation 19 can be viewed as a linear model with variable param-
eters which are called the global linear parameters and are given in the following
equations:

â���k�� � �Ta

b̂���k�� � �Tb (21)

In the Stone-Weierstrass theorem16 it is shown that the general form of TS fuzzy
model represents a universal approximator of any nonlinear dynamic system by
fuzzy basis function expansion with arbitrary precision. The proposed structure of
the TS fuzzy model is simplified, but it can be used for a wide range of industrial
processes.

To develop the DFMRAC algorithm the control law given in Equation 22 is
assumed first:

u �
1

�Tb
��Tf*w � �Tq*yp� (22)

where f* and q* are control parameters to be obtained by adaptive law. The control
law given in Equation 22 is in general not applicable because the unknown
high-frequency gain of vector b. Further development will result in an applicable
control law. Implementing the control law in the basic closed loop of the control
system, the following differential equation is obtained:

ẏp � ��Tayp � �Tf*w � �Tq*yp (23)

The fuzzy reference-model parameters am and bm can be defined as:

am � �am, am, . . . , am�T

bm � �bm, bm, . . . , bm�T (24)

and the reference model is written in the form of a fuzzy model by the following
equation:

ẏm � ��Tamym � �Tbmw (25)

Subtracting the differential equation with fuzzy parameters in Equation 25 from
Equation 23 the following error model is obtained:

ė � �Tame � �T� f* � bm�w � �T�q* � a � am�yp (26)

The following equations are written to simplify further derivation:

b̂ � f* � bm

â � q* � a � am (27)
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Implementing expressions from Equation 27 to Equation 26, the simplified equa-
tion is given by:

ė � �Tame � �Tb̃w � �Tãyp (28)

Introducing the Lyapunov function:

V�e, ã, b̃� � e2 � �
i�1

k 1

�bi
b̃i

2 � �
i�1

k 1

�ai
ãi

2 (29)

the time derivative of the function is given by:

V̇�e, ã, b̃� � 2eė � 2 �
i�1

k 1

�bi
b̃̇ib̃i � 2 �

i�1

k 1

�ai
ȧ̃iãi (30)

From V(e, ã, b̃) 	 0 and V̇(e, ã, b̃) � 0 the following equation should be fulfilled:

ew �
i�1

k

�ib̃i � �
i�1

k 1

�bi
ḃ̃ib̃i � 0

eyp �
i�1

k

�iãi � �
i�1

k 1

�bi
ȧ̃iãi � 0, i � 1, . . . , k (31)

Equation 31 leads to the adaptive laws which are obtained in the following
equation:

ḃ̃i � ��biew�i

ȧ̃i � �aieyp�i, i � 1, . . . , k (32)

Derivation of Equation 27 results in the following equations:

b̃̇ � ḟ*

ȧ̃ � q̇* (33)

where time invariance of the controlled system is again assumed.
Assuming Equations 32 and 33, the following equations are obtained:

ḟ*i � ��biew�i

q̇*i � �aieyp�i, i � 1, . . . , k (34)

The fuzzified vectors f* and q* are defined as:

f* � �f*1, . . . , f*k�
T

q* � �q*1, . . . , q*k�
T (35)

The control law in Equation (22) is rewritten in the following form:
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u � �Tfw � �Tqyp (36)

where f and q stand for:

f �
f*

�Tb

q �
q*

�Tb
(37)

According to Equations 34 and 37, the fuzzified adaptive parameters fi and qi,
where i � 1, . . . , k are written as:

fi � �
�bi

�Tb �
0

t

ew�i dt � fi�0�, �bi � 0

qi �
�ai

�Tb �
0

t

eyp�i dt � qi�0�, �ai � 0 (38)

In the case of known high-frequency gain vector b, which can be obtained by
measuring the statical characteristics of the plant, the adaptive law in Equation 38
can be implemented directly. But, in general the high-frequency gain is not known
in advance and the adaptive law in Equation 38 can not be implemented directly.

Next, we are going to investigate the adaptive law in Equation 38, and we will
try to find the solution for the case of unknown high-frequency gain. According to
the nature of the functions given in Equation 39, we can distinguish between two
different examples of constant and nonconstant high-frequency gain vector b:


bi��� �
��bi

�Tb


ai��� �
�ai

�Tb
. (39)

Equation 39 is, in the case of constant high-frequency gain, simplified to:


bi��� � �fsign�bi�


ai��� � �qsign�bi�, i � 1, . . . , k (40)

Assuming a high-frequency gain parameter of unknown constant value with
a known sign of sign(bi) � sign(b*), i � 1, . . . , k. The fuzzy adaptive law of
DFMRAC with constant high-frequency gain parameter is written in the integral
form as follows:

f � ��fsign�b*� �
0

t

ew� dt � f�0�, �f � 0
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q � �qsign�b*� �
0

t

eyp� dt � q�0�, �q � 0 (41)

and in differential form in Equation 42:

ḟ � ��fsign�b*�ew�

q̇ � �qsign�b*�eyp� (42)

In the case of nonconstant high-frequency gain the function in Equation 39
changes due to the change of �. The parameters �bi and �ai are chosen arbitrarily.
This means that those parameters can be chosen in a way so that they have a
constant function in Equation 39 at the apexes of the membership functions. The
difference between the value in apex and the value in the region between two
apexes depends on fuzzification of the operating domain. When the fuzzification of
the operating domain is sufficient, then the function in Equation 39 is approxi-
mately constant. In this case we assume a constant function in Equation 39 and
introduce the leakage modification of fuzzy adaptive control laws as in the case of
unmodelled dynamics. This modification is investigated next.

2.3. Stability Issues of DFMRAC

The fuzzy models are universal approximators of nonlinear processes.17 The
quality of approximation depends on fuzzification of the process state domain. The
fuzzification means the number, type and distribution of membership functions.

It is not possible in general to find a vector �* that would permit zero tracking
errors in each operating point since fuzzy modeling only guarantees arbitrary small
tracking errors. This means that we should always take care with the unmodeled
error. In the case of unmodeled dynamics the adaptive schemes may easily become
unstable. The lack of robustness is primarily due to the adaptive law, which is
nonlinear in general, and therefore more susceptible to modeling error effect.

The lack of robustness of adaptive law in Equation 42 in the presence of
bounded disturbance can be solved by new approaches and adaptive laws which
assure boundedness of all signals in the presence of plant uncertainties. This leads
to a new body of work referred to as robust adaptive control.

To introduce the robustness into the adaptive control scheme, we convert the
pure integral action of the adaptive law given by Equation 42 to a leaky integration.
It is therefore referred to as the leakage modification.

In the case of unmodeled dynamics the dynamical normalization is used to
obtain a robust solution. The design of the normalizing signal m will guarantee that
ns

m � �� and �f

m � ��, where 	s stands for modeling error term. The design of the
dynamical normalization signal is the following:

m2 � 1 � ns
2

ns
2 � ms � �f

T�f � u2 � yp
2
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ṁs � �
0ms � u2 � yp
2

ms�0� � 0 (43)

where 
0 	 0 should be properly chosen.18

The idea of leakage modification is to modify the adaptive law so that the time
derivative of the Lyapunov function used to analyze the adaptive scheme becomes
negative in the space of the parameter when these parameters exceed certain
bounds. This can be done by the modification of adaptive law presented in scalar
form as:

ḟ i � ��fsign�bi��w�i � �f��m��0fi�i, i � 1, 2, . . . , k

q̇i � ��qsign�bi��yp�i � �q��m��0qi�i, i � 1, 2, . . . , k (44)

or in vector form:

ḟ � ��f�w� � �f��m��0F�

q̇ � �q�yp� � �q��m��0Q� (45)

where we are assuming that sign(bi) � sign(b) for all i � 1, . . . , k and:

�f � �fsign�b�Ik�k

�q � �qsign�b�Ik�k (46)

and F and Q stand for diagonal matrices where fi, i � 1, . . . , k and qi, i �
1, . . . , k are the diagonal elements.

The term ��m��0 in Equations 44 and 45 is called the leakage term. In the
literature various choices11,19 of the leakage term are known. The best results have
been obtained by the upper choice which is called �-modification introduced by
Narendra and Annaswamy.10 The constants in �-modification are �0, which is a
design constant, m is the normalizing signal, and � is the normalized error between
the reference-model output ym and process output yp.

In the compact matrix form the adaptive law is written as follows:

�̇ � ��f� � ��diag���m��0 (47)

where:

� � � �f 0k�k

0k�k �q
� (48)

and:

�diag � � F
Q � (49)

The stability properties of adaptive laws with the �-modification and dynamic
normalization guarantee that:

�, �ns, �, �̇ � ��
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�, �ns, �̇ � ���0 � 	s
2/m2� (50)

and if ns, �f � �� and �f is persistently exciting and is independent of 	s, then
� converges exponentially to the residual set18

�� � �� � �n, ��� 
 c��0 � 	� �
 (51)

where c � 0 and n� � supt
	s

m. From Equation 50 it is also clear that �, �ns, and
�̇ are bounded in the �2e sense and belong to the �-small in the mean square
sense.

3. SIMULATION EXAMPLES OF MODEL-REFERENCE FUZZY
ADAPTIVE CONTROL FOR NONLINEAR PLANTS

Novel fuzzy adaptive control has been tested by means of simulation. Two
different nonlinear process models were used, namely, the surge tank process
model and the pH process.

3.1. Example: Level Control in a Surge Tank

The first simulation experiment was made on a surge tank,20 which exhibits
a strong nonlinear behaviour. A surge tank is a tank with parabolic profile. The goal
is to control the liquid level, h(t), in the tank by input flow u(t). The differential
equation describing this system is:

ḣ �
�c�2gh

S�h�
�

1

S�h�
u (52)

S�h� � ah2 � b (53)

where u(t) is the input flow or control input, which can be positive or negative (i.e.,
the system can both pull liquid out of the tank and put it in) h(t) is liquid level (i.e.,
the output of the plant) and S(h(t)) is the cross-section area of the tank, g � 9.8
m s�2 is gravity, and c � 1 m2 is the known cross-section area of the output pipe.
The nominal plant parameters a � 1 and b � 2 m2 are unknown. We assume that
the control input is saturated at �20 m3 s�1. The reference-model transfer function
is given as:

Gm�s� �
1

10s � 1
(54)

The simulated fuzzy adaptive control system in the case of the level control of the
surge tank is based on the adaptive law in Equations 45 and 47, where �0 �
0.000001 and the adaptive gains are �f � 2, �q � 2. The signals are normalized
instantaneously with normalizing signal m, defined in Equation 43 where normal-
izing parameter � � 5 was used. Due to the nature of the nonlinearity, the
operating domain of the process is divided into 27 subspaces, the variable h(t)
being divided into nine membership functions and the derivative ḣ(t) into three.
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Both linguistic variables (i.e., their membership functions) are shown in Figure 1.
This means that the vector of degrees of fulfillment � depends on variables h(t)
and ḣ(t) and is written as �(h, ḣ). The derivative of the output signal is obtained
using state variable filter Gf(s) � s/s�1. The results of the proposed fuzzy
adaptive control system are shown in Figure 2. In Figure 3 the fuzzified feedfor-
ward f and feedback gain q are shown. The convergence of fuzzy adaptive
parameters compared to those of the basic adaptive control system, which are
presented in Figure 5, is slower due to the higher number of adapted parameters.
But the convergence region of the tracking error is much smaller as it is shown in
Figure 2 for fuzzy and in Figure 4 for the basic adaptive system. The comparison
between output signals of fuzzy and the basic adaptive system and the model-
reference signal in the case of surge tank level control is shown in Figure 6 and the
control signals are depicted in Figure 7. The tracking errors are shown in Figure 8.
It can be seen that the classical approach never converges because of the nonlinear
nature of the controlled process. In the case of the fuzzy adaptive control scheme
the tracking error depends on fuzzification of the operating domain and can be
arbitrarily small.

3.2. Example: Adaptive Control of pH-Process

The problem of pH-process control is a common problem in many practical
areas, including waste water treatment, biotechnology processing, and chemical
processing.21 There are two common characteristics of pH-control: (i) difficulties
in pH-process control arising mainly from its heavy nonlinearity and uncertainty;

Figure 1. The fuzzy membership functions of (a) the process output signal and (b) the
derivative of the process output signal.
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(ii) diversity in control approaches applied, ranging from simple PID control,
adaptive control, nonlinear linearization control, gain-scheduling control and var-
ious types of model-based control to modern control systems, based on fuzzy
systems and neural networks. One reason for the increasing number of papers in

Figure 2. (a) The tracking error of the fuzzy adaptive system; (b) the control signal.

Figure 3. (a) The fuzzified feedforward gain f; (b) the fuzzified feedback gain q.
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recent years is the highly nonlinear character that makes pH control suitable for
illustrating new nonlinear approaches. Another reason for such attention in the
literature is the fact that practical pH-control has not yet been finally solved.

A simplified schematic diagram of the simulation test bench scale pH neu-

Figure 4. (a) The tracking error of the basic adaptive system; (b) the control signal.

Figure 5. (a) The feedforward gain f; (b) the feedback gain q.
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tralization tank is shown in Figure 9. Here, we are looking at a case where a strong
acid is neutralized by a strong base in water in the presence of carbonate (buffer),
and the output of the process is the effluent pH value. A dynamical model of

Figure 6. The comparison between output signals of fuzzy (——) and the basic adaptive
system (—.) and the model-reference signal.

Figure 7. The comparison between control signals of fuzzy and the basic adaptive system (——).
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pH-process has been derived using conservation equations and equilibrium rela-
tions employing a concept known as reaction invariant. Modeling assumptions
include perfect mixing, constant density, fast reactions, and completely soluble
ions. While keeping acid stream Fa (HNO3) and buffer stream Fbf (NaHCO3) at
constant rate, the control objective is to follow some desired pH trajectory by
manipulating the base stream Fb (NaOH and traces of NaHCO3).

The chemical equilibrium is obtained by defining two reaction invariants for
each inlet and outlet stream (i � [1, 4]):

Figure 8. The comparison between fuzzy and basic adaptive system tracking errors (——).

Figure 9. The pH-process.
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Wai � �H��i � �OH��i � �HCO3
��i � 2�CO3

2��i

Wbi � �H2CO3�i � �HCO3
��i � �CO3

2��i (55)

where the invariant Wai is a charge-related quantity, while Wbi equals the con-
centration of the [CO3

2�] ions. Unlike pH, these invariants are conserved quantities.
Using the equilibrium constants:

Ka1 � �HCO3
���H���H2CO3�

�1

Ka2 � �CO3
2���H���H2CO3

���1

Kw � �H���OH�� (56)

an implicit relation for [H�] can be derived:

Wa �
Kw

�H��
� Wb

Ka1

�H��
�

2Ka1Ka2

�H��2

1 �
Ka1

�H��
�

Ka1Ka2

�H��2

� �H�� � 0

pH � �log��H��� (57)

Equation 57 defines the static titration curve function relation pH value to reaction
variables.

The complete dynamical model is given by a mass balance equation and two
differential equations for the effluent invariants:

Aḣ � Fa � Fbf � Fb � cv�h

AhẆa4 � Fa�Wa1 � Wa4� � Fbf�Wa2 � Wa4� � Fb�Wa3 � Wa4�

AhẆb4 � Fa�Wb1 � Wb4� � Fbf�Wb2 � Wb4� � Fb�Wb3 � Wb4� (58)

Nominal values of the parameters and operating condition are taken from Ref. 21.
The acid and buffer flow-rates are supposed to be known and kept constant.

The simulated fuzzy adaptive control system in the case of pH process control
is based on the adaptive law defined by Equations 45 and 47, where �0 � 0.0001
and the adaptive gains are �f � 2, �q � 2. The signals are normalized dynam-
ically with signal m defined by Equation 43, where parameter 
0 � 0.05 was used.
The reason dynamical normalization is in unmodeled and unmeasured dynamics, is
because the plant actually exhibits the third order dynamics which in our case is
modeled with the first order fuzzy model. One way to assure a robust control is to
apply a leakage integration and dynamic normalization of the signals.

The operating domain of the process is due to the nature of the nonlinearity
divided according to the variable yp(t). But the fastest convergence was obtained
when ym(t) was also included in the premise. Both linguistic variables, i.e. their
membership functions, are shown in Figure 10. This means that the vector of
degrees of fulfillment � depends on variable yp(t) and ym(t) and is written as �( yp,
ym). This disagrees with the fuzzy model of the plant proposed, but gives better
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results. The results of the proposed fuzzy adaptive control applied on pH process
are presented in Figure 11, where the tracking error and control signal are shown.
In Figure 12 the fuzzified feedforward f and feedback gain q are shown. In the end,

Figure 10. The fuzzy membership functions of (a) the process output signal and (b) the
model-reference output.

Figure 11. (a) The tracking error of the fuzzy adaptive system; (b) the control signal.
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the tracking performance of the proposed fuzzy adaptive system in the case of pH
control and the control signal, which is saturated between 0 and 20, are shown in
Figure 13. In spite of highly nonlinear behavior and underestimated dynamics of

Figure 12. (a) The fuzzified feedforward gain f; (b) the fuzzified feedback gain q.

Figure 13. (a) The comparison between output signals of the fuzzy adaptive system and the
model-reference signal (——); (b) the control signal.
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the plant the obtained results are reasonably good. It should be pointed out that the
system is robust and the parameters in Figure 12 converge to constant values. The
envelope in Figure 11(a) also stays within an acceptable range of zero tracking
error.

4. CONCLUSION

In this paper a novel model reference fuzzy adaptive control system is
introduced. It is based on the Lyapunov stability criterion. The adaptive parameters
of the system are fuzzified. The main goal of the proposed approach was the
extension of globally stable adaptive control to nonlinear plants. The parameters
are fuzzified corresponding to the process input, output, or state variables of the
process. The development of the novel algorithm has been tested using simulation
on different nonlinear systems, including unmodeled and unmeasured dynamics.
The combination of adaptive-control theory based on models obtained by fuzzy
basis function expansion results in fuzzy direct model-reference adaptive control
which provides higher adaptation ability than basic adaptive control systems. The
main advantage of the proposed approach is simplicity together with high perfor-
mance. In this paper, the foundation for proposed algorithm is given and some
simulation examples are shown and discussed.

Acknowledgement
The author would like to thank BMFT-KFA Jülich, Germany and the Ministry of Science,
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